Advanced Math 6-4 Vectors and Dot Products

Vector Operations - Given $\boldsymbol{u}=\langle a, b\rangle$ and $\boldsymbol{v}=\langle c, d\rangle$
Vector addition: $u+v=\langle a+c, b+d\rangle$
answer is scalar vector
Scalar Multiplication : $k \cdot v=\langle k<, k d\rangle$
answer is scalar vector
Dot Product : $u \cdot v=a c+b d$
answer is scalar vector
$\vec{u} \times \vec{v}$

Do vectors exhibit the field following properties?
Given $\boldsymbol{u}=\langle a, b\rangle$ and $\boldsymbol{v}=\langle c, d\rangle$ and $\boldsymbol{w}=\langle x, y\rangle$
Commutative property; is $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$?

$$
\langle a+c, b+d\rangle=\langle c+a, d+b\rangle
$$

Commutative property; is $u \cdot v=v \cdot u$?

$$
\begin{aligned}
\mathrm{rty} \text {; is } u \cdot v & =v \cdot u ? \\
a c+b d & =c a+d b
\end{aligned}
$$

Distributive property; is $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}$? Yes

$$
\begin{aligned}
\langle a, b\rangle \cdot\langle c+x, d+y\rangle & =a c+b d+a x+b y \\
a(c+x)+b(d+y) & = \\
a c+a x+b d+b y & =a c+a x+b d+b y
\end{aligned}
$$

Vectors also have the following properties.

1) Dot by zero: $\mathbf{0} \cdot \boldsymbol{v}=0$

$$
\|\vec{v}\|=\sqrt{a^{2}+b^{2}}
$$

answer is scalar vector
2) Vector Dot Squaring: $\boldsymbol{v} \cdot \boldsymbol{v}=\|\boldsymbol{v}\|^{(2)}$

$$
\begin{aligned}
\langle a, b\rangle\langle a, b\rangle & =a \cdot a+b \cdot b \\
& =a^{2}+b^{2}
\end{aligned}
$$

answer is scalar vector
3) Scalar and Dot multiplication: $c(\boldsymbol{u} \cdot \boldsymbol{v})=c \boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u} \cdot c \boldsymbol{v}$
answer is scalar vector

Angle between two vectors: $\quad \cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}$
Use Law of Cosines.

Proof:

$$
\begin{aligned}
& \left.\left\|\vec{v}-\vec{i} \vec{n}^{2}=\right\| \vec{v} \vec{u}^{2}+\vec{w}\|-2\| \vec{u} \vec{N}\right)_{k o s} \theta \\
& \cdot v+\|\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\| \| \vec{v}(k \cos \theta \\
& -2 \underline{u} \cdot v \\
& -2\|\vec{u}\|\|\vec{v}\|
\end{aligned}
$$

Find the angle θ between vectors.
*)

$$
\begin{array}{ll}
u=2 i-5 j & \vec{u} \cdot \vec{v}=-2-35=-37 \\
v=-i+7 j & \|\vec{u}\|=\sqrt{29} \\
& \|\vec{v}\|=\sqrt{50}
\end{array}
$$

$$
\cos \theta=\frac{-37}{\sqrt{29} \cdot \sqrt{50}}
$$

$$
\begin{aligned}
& \theta=\cos ^{-1}(.97167) \\
& \theta=166.329^{\circ}
\end{aligned}
$$

Orthogonal Vectors - Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal (angle between vectors is 90°) if $\boldsymbol{u} \cdot \boldsymbol{v}=0$

Assignment: pg. 553 2-34 even.

kilogram

