Advanced Math 6-4 Vectors and Dot Products

```
Vector Operations - Given \mathbf{u} = \langle a, b \rangle and \mathbf{v} = \langle c, d \rangle

Vector addition: \mathbf{u} + \mathbf{v} = \langle a + c, b + d \rangle

answer is scalar vector

Scalar Multiplication: k \cdot \mathbf{v} = \langle k \cdot \rangle

answer is scalar vector

Dot Product: \mathbf{u} \cdot \mathbf{v} = \langle a \cdot \rangle

answer is scalar vector
```

Do vectors exhibit the field following properties?

Given
$$u = \langle a, b \rangle$$
 and $v = \langle c, d \rangle$ and $w = \langle x, y \rangle$

Commutative property; is $u + v = v + u$?

Yes

Commutative property; is $u \cdot v = v \cdot u$?

Act by Expression $u \cdot v = v \cdot u$?

Act by Expression $u \cdot v = v \cdot u$?

Act by Expression $u \cdot v = v \cdot u$?

Distributive property; is
$$u \cdot (v + w) = u \cdot v + u \cdot w$$
?

Vectors also have the following properties.

$$\sqrt[3]{\sqrt{2}}$$

$$||\vec{y}|| = \sqrt{a^2 + b^2}$$

- 1) Dot by zero: $\mathbf{0} \cdot \mathbf{v} = 0$ answer is scalar vector
- 2) Vector Dot Squaring: $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$ (a,b) = $\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b}$ answer is scalar vector
- 3) Scalar and Dot multiplication: $c(u \cdot v) = cu \cdot v = u \cdot cv$ answer is scalar vector

Find the angle θ between vectors.

*)
$$u = 2i - 5j$$
 $\vec{u} \cdot \vec{v} = -2 - 3S = -37$ $(S) \Theta = \frac{-37}{\sqrt{29} \cdot \sqrt{50}}$ $||\vec{u}|| = \sqrt{29}$ $||\vec{v}|| = \sqrt{50}$ $\Theta = \cos^2(\sqrt{297167})$ $\Theta = 166.329^\circ$

Orthogonal Vectors - Two vectors \mathbf{u} and \mathbf{v} are orthogonal (angle between vectors is 90°) if $\mathbf{u} \cdot \mathbf{v} = 0$

Assignment: pg. 553 2-34 even.

kilogram